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Exact and phase-integral quantal matrix elements of a 
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unbound states for a particle in a potential proportional to e-u 
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Uppsala, Sweden 

Received 2 September 1985, in final form 3 January 1986 

Abstract. The Jackson-Mott formula, which gives an exact expression for the matrix 
elements of exp( - a x ) ,  where a>O, between unbound states for a particle moving in a 
real potential proportional to exp( - a x ) ,  has been generalised by Mies for states with 
different potentials (but with the same a ) .  Eno and Balint-Kurti generalised the formula 
further to matrix elements of exp( -ax) raised to an arbitrary positive power. In the present 
treatment we make a further generalisation to matrix elements of a function corresponding 
to a damped oscillation exp( - y a x ) ,  where y is a complex number, between unbound 
states for a particle moving in a potential proportional to exp( - ax) ,  where a > 0. For the 
diagonal and non-diagonal matrix elements the resulting exact formula is compared to the 
corresponding phase-integral formula. When certain conditions are fulfilled, the respective 
phase-integral formula gives a very satisfactory result. 

1. Introduction 

In a paper concerning the energy exchange between inert gas atoms Jackson and Mott 
(1932) gave an exact expression for the quantal matrix elements (k, clexp( - ax)lk’, c) 
of exp(-ax), where a>0, between unbound states for a particle in the potential 
exp( - ax)a2c2h2/2m, where c is a real dimensionless parameter. Mies (1964) gen- 
eralised the Jackson-Mott formula for (k, clexp( - ax)l k’, c) into a formula for 
(k, clexp( - ~ ) l k ’ ,  c’). Eno and Balint-Kurti (1977) generalised the formula further 
into a formula for the matrix elements of exp( - ax) raised to an arbitrary positive 
power, and applied it to the calculation of inelastic molecular collision cross sections. 
In the present work we make a further generalisation and obtain formulae for 
(k, clexp( - yax)lk’, c’), where Re y > 0, Re c > 0, Re c’ > 0. The reason for making 
such a generalisation is that we want to study matrix elements of a possibly oscillating 
function, and sufficiently general formulae for exactly soluble models do not seem to 
be available in the literature, as far as unbound states are concerned. There is another 
good candidate (apart from the model problem treated in the present paper), namely 
the exact bound-state matrix element obtained by Myhrman (1983), which should be 
possible to generalise to unbound states and an oscillating function. It goes without 
saying that a model problem, for which the matrix elements between unbound states 
of a function corresponding to a damped oscillation can be obtained in a rather simple 
closed form, should have a wide range of applicability. 

0305-4470/86/153017 + 15%02.50 @ 1986 The Institute of Physics 3017 
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Froman er a1 (1985) have recently used the Jackson-Mott formula for investigating 
the accuracy of a phase-integral formula for the matrix elements involving unbound 
states (Froman et al 1979); the phase-integral formula was found to be very satisfactory. 
In the present paper we demonstrate that the phase-integral diagonal and non-diagonal 
matrix elements of a function corresponding to a smooth or rather smooth damped 
oscillation are also very accurate for one-turning-point problems. For a function which 
oscillates too strongly, however, the accuracy becomes rather mediocre or even poor. 
This is in agreement with bound-state matrix element results, reported by Froman and 
Froman (1977). 

2. The model Schrodinger equation and its acceptable solution 

The one-dimensional Schrodinger equation for a particle with the energy h2k2/2m > 0 
moving in the potential exp( - ax)a2c2h2/2m can be written 

d2u/dx2+ R(x)u = 0 -0O<x<0O ( l a )  

where 

R(x)  = R,,(x) = k 2 -  a2c2 exp( - a x ) .  (1b) 

We shall assume a to be real and positive: 

a>O (2a)  

and c to be complex with a positive real part: 

Re c > O .  (2b) 

Thus we exclude the case of real negative values of c2. 

to a sine function with the prefactor unity as x + + 00, is 
The particular solution uk,Jx) of (la, b), which tends to zero as x + - a3 and tends 

U k,c( x )  = [ 2k/ ( m  ) sinh( 2 .rrk/ a ) ]  1’2K2ik/a(2c exp( - tax)) Rec>O (3) 
where K,(cz) is the modified Bessel function of the third kind. In fact, according to 
equation (9.6.24) in Abramowitz and Stegun (1965) this solution can be rewritten as 

ukc(x) = [k/(27ra) s i n h ( 2 ~ k / a ) ] ’ / ~  
+a0 

exp[ -2c exp( - tax)  cosh y] cos(2kyla) dy L 
= (27rk/ a)-’ /2[s inh(2~k/  a) ] ’ l ’ c  exp( - tax)  

+m 

x exp[ -2c exp( - tax)  cosh y ]  sin(2kyla) ey dy Rec>O 
-02 

(4) 

where it is immediately seen that the second member tends to zero as x +  -00, and 
where the last member is obtained through integration by parts. Introducing into (4) 
the substitution 

e y =  Y ( 5 )  
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we obtain with the aid of equations (6.1.31) and (6.1.1) in Abramowitz and Stegun (1965) 

c exp( -fax) lom 
ukc(x) = Ir(i +2ik/a))- '  exp[ - c exp( -;ax)( Y + Y-I)] 2i 

c exp( -fax) Sp 
exp[ - c y  exp( -tax)] ( 2i 

= lT(1+2ik/a)l-' 

c exp( - tax)  lom 
{ 1 - exp[ - cy- '  exp( -fax)]} - 

2i 

x exp[ - c y  exp( -iax)](  yZikla - 

= sin[kx - ( k / a )  In c2+arg r ( l  + 2ik/a)] 

) d Y  Re c>O. (6) y - 2 i k / a  x exp[ - C Y  exp( -tax)]( Y ~ ~ ~ ' ~  - 

The second term on the right-hand side of (6) tends to zero as x -+ +CO, and hence 

u,,(x)-sin[kx-(k/a) In c 2 + a r g r ( l  +2ik/a)]  x +  +cc Re c>O. (7) 

3. Calculation of the exact matrix element 

We shall now calculate the matrix element 
+D. 

(k c(exp(- yax)lk', c ? =  uk,c(x) exp(-?ax)uk',c'(x) dx I, 
Rec>O Re c'> 0 

where ukc(x) is the acceptable solution given by (3), and where 

Re y>O 

in order that the integral on the right-hand side of (8) be convergent. 
Substituting (3) into (8) and making in the resulting formula the substitution 

we obtain 

(k ,  clexp( - yax)Ik', c') =- [(27rk/a) s inh(2~rk/a) (2dd/a)  ~ inh("r rk ' /a ) ] ' /~  
21-2y 

7T2a 

Re c '> 0 Re y>O. 
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Using equation (6.576:4) on p 693 in Gradshteyn and Ryshik (1980) or equation (49) 
on p 145 in ErdClyi (1953) together with equation (15.3.3) in Abramowitz and Stegun 
(1965), we obtain from (11) the following expression for the matrix element: 

(k, clexp( - yax)Ik’, c‘) 

= (4r2a)-’[  (27rk/ a )  sinh(2rkl a)(271.k’/ a )  sinh(2rk’l U ) ] ~ ” C - ~ ~  

x r( y +  i( k’+ k ) / a ) T (  y+i(  k ‘ -  k ) / a ) T (  y - i (  k’+ k ) / a )  

x r ( y - i ( k ’ -  k ) / a )  exp[i(k’/a) ln(c”/c2)] 

x 2F,(  y + i( k’+ k ) / a ,  y + i( k ’ -  k ) / a ;  2 y ;  1 - c”/ c2) / r (2y)  (12) 

which is valid under the assumptions (2a, 6)  and (9). Alternatively, with the aid of 
equation (6.1.31) in Abramowitz and Stegun (1965) our final formula (12) can be 
rewritten as 

( k ,  clexp( - yax)lk‘, c’) 

= ( k k ’ / a 3 ) [ r ( l + 2 i k / a ) r ( l  -2 ik /a)~(1+2ik’ /a)T(1-2 ik’ /a) ] - ’ ’ ’  

x c-2yT(  y +  i(k’+ k ) / a ) T (  y +  i(k’- k ) / a ) T (  y - i( k’+ k ) / a )  

x r( y - i( k’ -  k ) / a )  exp[i( k ‘ / a )  In( c”/ c’)] 

x 2F,(  y + i (  k’+ k ) /  a, y + i( k’ - k ) / a ;  2y; 1 - cI2/ c2)/r(2y).  (12’) 

If c’ and c are real and if y = a +ip, where a > 0 and p is real, we obtain the 
matrix element ( k ,  clexp( - aax)  cos(pax)l k’ ,  c’) by taking the real part of the right-hand 
side of (12) or (12’) and ( k ,  c)exp( - aax)  sin(pax)lk‘, c’) by taking the imaginary part 
of the same side. 

For real values of y ,  c’ and c we obtain from (12) the generalised Mies formula 
(Eno and Baht-Kurt i  1977). Putting y = 1 and assuming c‘ and c to be real, we 
obtain the formula given by Mies (1964). Putting y = 1 and c ‘ =  c (real), we obtain 
the Jackson-Mott (1932) formula. 

Formula (12) (or (12’)) is written in a form which is suitable for the evaluation of 
the matrix element when c’ is equal to or close to c. When the ratio c‘/c deviates 
strongly from unity one should at first use the linear transformation formulae for the 
hypergeometric function in (12) or (12’) (cf, e.g., chapter 15 in Abramowitz and Stegun 
(1965)) before making any analytical or numerical evaluations. 

4. Comparison with the corresponding phase-integral formula for diagonal matrix 
elements 

For the background of this section see appendix 1. In appendix 1 the choice of base 
function Q(x) has been kept open, depending on the problem considered. In the 
present application we shall choose 

Q(x)  = R1’*(X)  (13) 

where R ( x )  is given by (16) and where for a real potential Q(x) is positive on the 
upper lip of the cut emerging from the zero x,, of Q2 to the right along the real x axis. 
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Adapting and applying equation (A1.15) of appendix 1 to the exactly soluble model 
described previously in the present paper, we obtain with the aid of equation (13.2(6)) 
in Erdilyi (1953) and equation (6.1.8) and (6.1.18) in Abramowitz and Stegun (1965) 
for the phase-integral approximation of order 2 N  + 1 

2 N  2 N - n  
- 

n = O  m=O 

B(Y)B(Y) (1 - Y ) n ( l -  Y)m n m  
X 

n !  m! (2ik/a)"(-2ik/a)" 

a4 +- 
5760k4 

( y -  1)( y-2)(2y-  1)(2y-3)(5y+ l ) + .  * .  

Re c > O  Re y>O (14) 

and 

B?)=$[(+JY] 1=0 ' 

In (14) the numbers in parentheses below the terms indicate the contributions from 
successive orders of the approximation. The explicit expressions for the first B?) are 

B?'= ~ ( 3 7 -  1)/12 (17c) 

B P ) =  -y2 (y -  1)/8 ( 1 7 4  

Bk" = y( 15 y3- 30y2+ 5 y +2)/240 (17e) 

Bi" = -y2(3y3 - 10y2+ 53/+2)/96 (17f) 

BP' = ~ ( 6 3  y5 - 3 15 y4 + 3 15 y3 + 91 y2 - 427 - 16)/4032 (17g) 

B$") = -y2(9y' -63y4+ 105y3 + 7yz - 427 - 16)/ 1152 (17h) 

BP' = y(  1357' - 1260y6+ 3 1 5 0 ~ ~  - 8 4 0 ~ ~  - 2 3 4 5 ~ ~  - 540y2+404y + 144)/34 560. 
(171) 

Formula (14) has been obtained analytically for positive integral values of N up 
to 2, i.e. up to the terms given explicitly on the right-hand side of (14). For higher 
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values of N and certain numerical values of the parameters we have integrated 
numerically the right-hand side of (A1.15) in appendix 1, adapted and applied to the 
present problem, and found an agreement with the second member of (14) within the 
accuracy obtainable numerically. 

Formula (14) is, for any order of approximation, expected to be rather mediocre 
as compared to the exact result in the previous section, if k / a  is sufficiently small. 
This is due to the fact that (A1.15) in appendix 1 is a one-transition-point formula, 
and for the exponential potential there are other transition points in the complex plane, 
the contributions of which become important for sufficiently small values of k/a.  
Hence, the model potential in question can be used for testing (A1.15) in appendix 1 
only when 2k/a  b 1. 

Introducing the notation 

we obtain from (14) and (13) with k' = k and c' = c 

( 2 k / ~ ) * ~ - ~  
r( 1 + 2 i k / a ) r (  1 - 2ik/a)  
r( y + 2ik/ a ) T (  y - 2ik/ a )  p ( Y ;  k / a ) =  

B(Y)B(Y) 
Re y>O. (19) (1 - y)ri(l- Y ) m  n m  

X Y  n=O ""cm m=O n ! m !  (2i k/ a ) " (  - 2ik/a)" 

It should be noted that P ( y ;  k / a )  is independent of c; cf the comments following 
equation (31). 

Putting y = r + i ,  where r is a non-negative integer, we obtain from (19), with (15) 
and (16), with the aid of equations (6.1.15) and (6.1.30) in Abramowitz and Stegun 
(19651, 

P( r +i; k / a )  = [ 1 + exp( - 4 ~ k / a ) ] / [  1 - exp( - 4 ~ k / a ) ]  

r = 0,1,2,  . . . ; N 3 r (20) 
which means that for positive half-integral values of y the phase-integral formula (14) 
is very accurate if 2k/ a > 1 and N 3 y - i. 

Putting instead y = r + 1 in (19) with (15) and (16), and using the recurrence formula 
(6.1.15) in Abramowitz and Stegun (1969, we obtain 

P ( r +  1; k / a )  = 1 r = O , l , 2 , . , . ;  N a r  (21) 
which means that (14) is exact if y is a positive integer and N 5 y - 1. 

It should be emphasised that the exactness of the phase-integral formula for diagonal 
matrix elements, when y is a positive integer and N 3 y - 1, previously reported for 
y = 1 by Froman et a1 (1989,  is merely accidental. The total effect of other transition 
points than the relevanf' turning point xo is then (even for very small values of k / a )  
equal to zero, although the contribution from each complex transition point for small 
values of k / a  may be considerable. According to (20) for half-integral values of y 
the phase-integral formula is mediocre and even poor, if k / a  is sufficiently small, and 
this is due to the fact that the contributions from transition points other than xo do 
not cancel one another in this case. 

For complex values of y with IIm yI too large (14) is expected to be rather mediocre 
as compared to the exact result in the previous section, since the phase-integral formula 
(A1.15) in appendix 1 is derived under the assumption that the function f is smooth. 
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Consider a complex value of y with (Im y l<  k/a, which means that the function 
exp(-yax) oscillates slower than the right-hand side of (7). Introducing into the 
right-hand side of (19) the asymptotic Tricomi-Erdilyi expansion (2.11( 12)) in Luke 
(1969) for r ( y + 2 i k / a ) / r ( l + 2 i k / a )  and the same expansion for r ( y - 2 i k / u ) / r ( l -  
2ik/a),  we obtain 

the second member of (22) being exactly equal to unity, if the double sum in the 
denominator is truncated properly. Hence, unless IIm y (  is too large the phase-integral 
formula is very accurate, particularly if k /  a is large and an optimal order of approxima- 
tion is chosen. 

With the aid of chapter 6 in Abramowitz and Stegun (1965) and a desk calculator 
one can easily show that (14) is mediocre or even poor for IIm yI 3 k/a, as compared 
with the exact result in § 3. Hence the function exp( - y a x )  should not oscillate more 
rapidly than exp(ikx) in order that the phase-integral formula (23) should be applicable. 

The above analysis demonstrates that the rules for obtaining the region of validity 
of phase-integral formulae such as (A1.15) in appendix 1 are quite simple and that 
the phase-integral approximations are very satisfactory within their region of validity. 

It should be emphasised that in practical calculations it is often sufficient to go to 
the third-order approximation, i.e. one chooses N = 1 in the formulae of this section. 

5. Comparison with the corresponding phase-integral formula for non-diagonal matrix 
elements 

For the background of the present section we refer to appendix 1. Adapting and 
applying (A1.16) in that appendix to the exactly soluble model described in §§ 2 and 
3 with Q(x)  chosen according to (13) with ( lb) ,  we get after some calculations the 
phase-integral formula of order 2N + 1 

(k ,  c/exp( - yax)lk', c') = ;( kk')''' 

2 k k +  RL!:(x) 
a a k-R:!J(x) 

w',t;(x) = -- RY:(x) +- In 

w(3)  1 a 5 k2a 
16 RL!: 48 RZ: 

kc(x) = - - 

25 a3  531 k2a3 221 k4a3 1105 k6a3 +-- 
3072 Ri:? 5120 Rr: 1024 RZ: 9216 RY: (25c) w ( 5 )  +----- k C ( X )  = -- - 
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1073 a 5  50049 k2a5  186821 k4a5 
163 840 R:: 229 376 RZ: 147 456 RY: 

wp(x) =- - +-- 
44899 k6a5  82825 k s a 5  82825 kIoa5 
16384 R k ,  32768 RY;’ 98304 RCL2 

- 

and where 

The notations are essentially the same as in appendix 1, although adapted to the present 
one-dimensional problem and with the dependence on k and c indicated in an obvious 
way (see figure 1 ) .  According to p 755 in Froman er a1 (1979), in the exponential 
function in the numerator of the above formula (23 )  the plus sign should be used if 
k > k’, while the minus sign should be used if k < k’. The dependence of R on k and 
c is indicated explicitly in the notation. 

The explicit expression for the function q k c ( x )  in (23 )  in the order 2 N + 1  is 
obtained after some calculation as 

N 

where 

a’ 3k2a2  5k4a2 
+f 32RkC 16Ri,c 32Rk,c 

yz=--- 

Figure 1. ( a )  shows -Rc,(x) and -Rk,,cz(x) for k f k’ (and possibly c # c ’ ) .  The class- 
ical turning points are denoted by xo and x;, respectively. (b)  shows the contour of 
integration r in the phase-integral formula (23) for quantal matrix elements associated 
with non-bound states, where it should be noted that jTzl . . . dx = flr . . . dx. This contour 
shall enclose both classical turning points xo and x;. The function R ” 2 ( ~ )  is positive on 
the upper lip of the cut emerging from xo and x; to the right along the real axis, provided 
c is real. 
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25a4 139k2a4 1039k4a4 663k6a4 1105k8a4 
Y 4 = - 2 0 4 8 R i c  512Rkc 1024Rt ,  512Rk,  2048Rt ,  +-- +s- (28c) 

1073a6 - 25 561k2a6+423 691k4a6 - 340 355k6a6 
65 536Rkc 32 1 6 8 R t c  65 536R:, 16 384Rk, 

Y6 = 

2064 503k8a6 745 425k”a6 . 414 125k”a6 
I 65536Rk,  32768R[ ,  ‘ 6 5 5 3 6 R i C  ’ 

Let us now particularise to the case c’ = c. Since according to (1  b )  we have 

R k r , c ( ~ ) =  k r 2 - k 2 +  R , , ( x )  (29)  

exp( - yax)  = C Z Y ( k 2 -  R k c ( x ) ) Y a - 2 Y  (30 )  

and 

it is easily seen from (23 )  with (24 ) ,  (25 )  and (26 )  that the right-hand side of (23 )  can 
be rewritten as c - ’ ~  multiplied by a c-independent integral over R, ,  with ‘lower limit’ 
0 (since Rkc(xo)  = 0) and upper limit k2. Hence, for c’= c the only dependence of c 
of the right-hand side of (23)  is due to a factor c-*’ (cf also equation (14)  in 0 4 ) ,  
which is the same c dependence as is found in the exact matrix element (12 )  or (12’) 
with c‘ = c. Hence the error of the phase-integral approximation is independent of c 
(real or complex) and the error analysis can therefore be restricted to real values of c 
when c’= c (and even to c =  1 ) .  

The evaluation of the non-diagonal matrix elements by means of the phase-integral 
formula (23 )  is most conveniently carried out with the aid of a computer program, 
which allows the calculations to be carried out rather automatically. The results of 
the numerical calculations for comparing the phase-integral results obtained from (23 )  
with the exact results obtained from (12)  are shown in figure 2 for various values of 
Im y. The relative error of the phase-integral formula (23)  given in this figure was 

Figure 2.  For a = 1,  c = c‘ = Re y = 1, k = 5 ,  k‘ = 2.5 this figure gives the absolute value of 
the relative error (32) of the phase-integral value of the matrix element, obtained from 
(23), as a function of Im y. The figures (1 ,3 ,5 ,7)  at the curves indicate the orders of the 
phase-integral approximation. The figure confirms that accurate results are obtained if the 
function exp( - yax)  does not oscillate too strongly. The figure also illustrates that the 
phase-integral formula gives mediocre or poor accuracy for Im y >  max(k’/a, k l a ) .  
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obtained by first subtracting the exact value from the phase-integral value, dividing 
this difference by the exact value and finally taking the absolute value: 

lthe relative error1 

Figure 2 shows that the phase-integral results for the off-diagonal matrix elements 
obtained from (23) are very accurate for small values of (Im y (  and are reasonably 
accurate up to IIm yI = max( kla ,  k’la).  Hence, the function exp( - yax) should not 
oscillate more rapidly than exp(ikx) if k > k‘ in order that the phase-integral formula 
(23) should be applicable. 

6.  Concluding remarks 

An exact formula for the matrix element 

(k, c)exp( - yax)lk’c’)=(k, clexp( - aax-ipax)lk’, c’) 

where Re c > 0, Re c’>  0, a > 0 and p is real, has been derived for the case of an 
exponential potential. The respective potential is exp( - ax)a2c2h2/2m with energy 
h2k2/2m > 0 and exp( - a x ) ~ ~ c ’ ~ f i * / 2 m  with energy fi2kf2/2m > 0. By taking the real 
part and the imaginary part respectively, we obtain for real values of c and c‘ the 
matrix elements 

(k, c/exp( - aux) cos(pax)lk’, c’) 

and 

(k, clexp( - aax)  sin(pax)lk’,c’). 

It should be useful, for various practical purposes, to have such an exact expression 
for the respective matrix element. 

During the present investigation the authors have also considered the effective 
extension to the I Z O  case. This cannot be done in a simple way for the purely 
exponential potential. However, an exactly soluble model of a screened Coulomb 
potential, for which the matrix element of exp( - yax) between states with different 1 
can be obtained exactly, has been reported by Myhrman (1983) for the case of bound 
states and positive real values of y. It should be possible to extend Myhrman’s (1983) 
investigation to the case of unbound states and complex y with Re y > 0. 

In most applications, however, one must rely upon approximate calculations. For 
matrix element calculations brute force computing may raise difficulties, particularly 
if the wavefunction oscillates rapidly. Froman et a1 (1979) have obtained a formula 
for the matrix element of a smooth function between unbound states for a one-turning- 
point (one-dimensional or radial) problem. The exact formula in the present paper 
has been used to test the formula obtained by Froman er a1 (1979). 

Our investigation has shown that the phase-integral formula for the matrix element 
is very satisfactory for a one-turning-point problem, as long as the function 
exp( - yax) = exp( - aax  -@ax) does not oscillate too strongly. It should be noted, 
however, that for a given potential, such as the exponential potential, for sufficiently 
low energies there may appear extra (possibly complex) transition points, the contribu- 
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tions of which cannot be neglected. In a previous study of the phase-integral matrix 
element of exp( - ax) by Froman et a1 (1985) using the Jackson-Mott formula this 
effect from the extra transition points accidentally did not show up. This can be 
understood in the following way. For low energies in the Jackson-Mott case ( y  = 1 
in the present work) there is a contribution from each extra complex transition point. 
Each such contribution is significant for low energies also when y = 1 but the total 
effect accidentally vanishes completely also for low energies. 

We have demonstrated that the phase-integral diagonal and non-diagonal matrix 
elements of a function corresponding to a smooth or rather smooth damped oscillation 
are very accurate, provided a one-turning-point problem is considered. For a function 
which oscillates too strongly, however, the accuracy becomes rather mediocre and even 
poor. This is in agreement with bound-state matrix element results (for exp(ikx) 
between harmonic oscillator states) reported by Froman and Froman (1977). Quantita- 
tively we find that the function in the matrix element should not oscillate more rapidly 
than the wavefunction involved, which oscillates most rapidly. 

In the present investigation we have only been able to present very limited 
numerical material. However, there exists at our institute a numerical program with 
the aid of which the phase-integral calculations can be performed in a rather automatic 
way, and this program can be made available to potential users. 

Acknowledgments 

It is a pleasure to thank Professor Per Olof Froman and Dr Erik Walles for fruitful 
conversation and the referees for their constructive critical comments. The authors 
would also like to thank Anders Hokback for assistance with some numerical 
calculations. 

Appendix 1. Brief description of the arbitrary-order phase-integral approximation and 
of phase-integral formulae for matrix elements between unbound states 

According to the phase-integral approximation of the order 2 N  + 1, introduced by 
Froman (1966, 1970) and generalised, for example, by Froman and Froman (1974), 
the differential equation ( l a ) ,  i.e. 

d2u/dx2+ R(x)  = 0 (Al . l )  
has the two linearly independent approximate solutions (cf equation (8) in Froman 
and Froman 1974) 

(A1.2) U = q-1’2(x) exp( *iw(x)) 

where 

(A1.3) 

and 

(A1.4) 
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Here Q(x) is an unspecified function, called the base function, which can be chosen 
conveniently, and the first few of the quantities Y2, are (cf equations (6a)-(6d)  in 
Froman and Froman (1970)) 

Yo= 1 (A1.5a) 

y 2 -1 - 2-50 (A1.5b) 

Y4=-Q(E:+E2) 

Y6 = k ( 2 ~ :  + 5 s :  + 6 ~ 0 ~ 2  + E ~ )  

where (cf equation (3) in Froman and Froman (1974)) 

and (cf Froman and Froman 1974) 

( A 1 . 5 ~ )  

(A1.5d) 

(A1.6) 

(A1.7) 

The advantage of using the phase-integral approximation described above instead 
of the JWKB approximation, when a higher-order approximation is needed, is described 
in the appendix of Froman and Froman (1985). The choice of the unspecified base 
function Q(x),  appearing in the phase-integral approximation, is also discussed in 
that appendix. 

For the higher orders of the phase-integral approximation the function q(x) has 
such strong singularities at the points where Q2(x) has zeros that one cannot choose 
the constant lower limit of integration on the right-hand side of the definition (A1.3) 
of w(x) to be a zero of Q2(x), which is often convenient when the first-order approxima- 
tion is used. When Q’(x) has a simple zero, and an arbitrary order of the approximation 
is used, it is instead often convenient to write w(z) as a certain contour integral on a 
two-sheet Riemann surface on which q(x) is single valued. The two sheets of this 
Riemann surface are cut and joined appropriately along a line emerging from the zero 
xo of Q2(x) in question. Thus one defines 

w(x) = {(lo) d x )  dx (A1.8) 

with 

d x )  dx = t lr,,, q b )  dx (Al .9)  

where T(x)  is a contour of integration starting at the point corresponding to x but 
lying on the next (or on the previous) Riemann sheet encircling the zero xo of Q’(x) 
in the negative (or in the positive) sense, and ending at the point x. Such a contour 
T(x) in the limit as x tends to +a, with the turning point encircled in the negative 
sense, is shown in figure l (b ) .  For the first-order approximation the contour T(x) can 
be deformed such that the integral (A1.8) goes over into an integral from xo to x, and 
hence w(x), originally defined by (A1.8) with (A1.9) is in this particular case also 
given by the integral in the right-hand member of (A1.3) with the generalised classical 
turning point, i.e. the zero xo of Q’(x), as the lower limit of integration. When R ( x )  
and Q2(x) are real on the real x axis, the functions Yz. are real there, and hence, on 

Lo) 
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the real x axis, the function w ( x ) ,  given by (A1.8), is (for any order of approximation) 
real on the side of the generalised turning point where Q2(x) is positive (classically 
allowed region in the generalised sense) but purely imaginary on the side of the 
generalised turning point where Q'(x) is negative (classically forbidden region in the 
generalised sense). 

Now we shall consider, in a radial (spherically symmetric) effective potential, a 
non-bound state with a single generalised turning point xo. The state is characterised 
by the orbital angular momentum 1 and the radial momentum fik (at infinitely large 
distance from the centre of force). In the definition of the matrix element of f (x) ,  
involving two unbound states, 

Exact and phase-integral matrix elements 

(A1.lO) 

We normalise Ul,k(X) (and similarly ul , ,k ' (X))  by requiring that 

u I , k ( X )  shall for a real potential be positive immediately to the right of x = 0 
( A l .  1 1  a )  

and 
Ul,k(X)-sin(kx- 1 7 ~ / 2 + 6 , )  x-, +a2 (Al.11 b )  

where 6, is the asymptotic scattering phase shift. 

mate formula for the diagonal matrix element 
According to (Ai.16) in the appendix of Froman et a1 (1985) we have the approxi- 

(A1.12) 

where the integration symbol is explained above in connection with (A1.9), and where 
the first few of the quantities C2* are given by equations (22a)-(22d) in Froman (1974), 
i.e. 

CO= Yo= 1 ( A 1 . 1 3 ~ )  

C, = - Y2 (Al.13 b )  

c, = -( Y4-  Y:)  ( A l .  13 c )  

c6=-(Y6-2Y2Y4+ Y i ) ,  (A1.13d) 

When x does not lie too close to a zero or singularity of Q'(x), the quantities 
Y2,  Y4,  Y 6 , .  . . , should be small compared to unity, and by means of (A1.4) and 
(A1.13a)-(Al.l3d) we obtain the approximate formula (cf equation (25) in Froman 
1974) 

l N  1 
- c c'"=g(x!. Q(x) n = o  

(A1.14) 

Inserting (A1.14) into (A1.12), we obtain the approximate but often very accurate 
phase-integral formula for the diagonal matrix element 

(A1.15) 
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The generalisation of (A1.15) to non-diagonal matrix elements is according to 
equation (A.17) in the appendix of Froman et a1 (1985) or equation (14) in Froman 
et a1 (1979) 

(Al .  16) 

where both states are assumed to be unbound, and (unless the difference 1 - I' is positive 
and too large) the plus sign should be used if k >  k ' ,  while the minus sign should be 
used if k < k', and where the path of integration should follow the contour r in figure 
l ( b )  with due care taken to the factor 1 in our integration symbol; cf (A1.9) above. 
For the case when both states are bound or one state bound and one unbound, cf the 
appendix in Froman et a1 (1985). 

Appendix 2. Alternative derivation of the exact quantal matrix element 

We shall now demonstrate a procedure, alternative to the one in 9 3, for obtaining the 
matrix element (k, clexp( - yax)/ k', c') with c' = c. The derivation may be of some use, 
for example in connection with generalisations. Substituting (4) into (8) and introduc- 
ing into the resulting formula the substitution (10) we obtain 

(k, clexp( - yax)Ik', c') 

= (27r2a)-'[(27rk/a) s inh(27rk/a)(2~k' /a)  ~ i n h ( " r k ' / a ) ] ' ' ~ 2 - ~ ~  

x Ioa dz z z Y - l  [-: dy 5"; dy' 
-a 

x exp[ - z ( c  cosh y S  c' cosh y')] cos(2ky/a) cos(2kyf/a). ('42.1) 
Interchanging the orders of the integrations in (A2.1) so that the integration with 
respect to z is performed first, we obtain with the aid of Euler's integral for the gamma 
function (cf equation (6.1.1) in Abramowitz and Stegun (1965)) 

( k ,  clexp( - yax)I k', c ' )  = (2  7r2a)-'[  (27rkl a )  sinh(27rkl a)(27rk'/ a )  sinh(27rk'l a ) ]  

+E cos(2kyla) cos(2k'y'/a) 
(c  cosh y + c' cosh y ' ) 2 y  

dy dy'. 

Introducing the new variables of integration 

t = i ( y + y ' )  

t ' = ;( y - y ') 

and using the identities 

cosh( t + r ' )  +cosh( t - t ' )  = 2 cosh r cosh t '  

2 cos[2k(t+ t ' ) / a ]  cos[2k'(t - r ' ) /a]  

=  COS[^(^ + k ' )  t / a ]   COS[^( k - k ' ) t ' / a ]  

+cos[2(k+ k ' ) t ' / a ]  cos[2(k- k ' ) t /a]  

-sin[2(k+ k ' ) t / a ]  sin[2(k- k ')r ' /a]  

-sin[2(k+ k ' ) t ' / a ]  sin[2(k- k ' ) t / a ]  

(A2.2) 

(A2.3 a ) 

(A2.36) 

( A 2 . 4 ~ )  

(A2.4b) 
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we obtain from (A2.2) with c ‘ =  c after some calculations 

(k ,  clexp( - yax)lk’, c) = (.rr2a)-’[(2.rrk/a) sinh(2.rrk/a)(2.rrk’/a) ~inh(2.rrk’/a)]’’~ 

cos[2(k+k‘)t/a] 
(cosh t ) 2 y  

d t ’ .  

dt  x ( 4 4  - 2 q 2  y )  5 
+cc cos[2( k - k’ )  t ‘ /  a] 

(cosh t ‘ ) 2 y  

Evaluating each integral in (A2.5) with the aid of equation (3.985) in Gradshteyn and 
Ryshik (1980), we obtain 

(k, clexp( - yax)lk’, c) 

= (4.rr2a)-’[(2.rrk/a) sinh(2~k/a)(2.rrk’/a) s i n h ( 2 ~ k ’ / a ) ] ’ ’ ~ c - ~ ~  

x r( y +  i( k‘+ k ) / a ) T (  y + i (  k ’ -  k ) / a ) T (  y -i(k’+ k ) / a )  

x r( y - i( k’ - k ) / a ) / r ( 2 y )  (A2.6) 

which is valid under the assumptions (2a, b )  and (9). Putting y = 1, and using equation 
(6.1.31) in Abramowitz and Stegun (1965) we obtain from (A2.6) the Jackson-Mott 
(1932) formula as a particular case. 
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